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A brief introduction to quantum information theory in the context of quantum optics is pre-

sented. After presenting the fundamental theoretical basis of the subject, experimental
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evaluation of entanglement measures are discussed, followed by applications to communication

and imaging.
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1. From Bit to Qubit

1.1. Introduction

Quantum information science is a rapidly developing area of interdisciplinary in-

vestigation, which plays a signi¯cant role in a number of sub-disciplines of physics

and engineering. Quantum communication (including quantum key distribution for

cryptography) and quantum imaging are currently two of the most exciting appli-

cations of quantum information science. For this reason, we focus here on quantum

optical systems, a natural choice because communication and imaging are typically

optical in the current era. Further, interferometry is central to quantum information

processing and interferometry has primarily progressed through optical physics.

Quantum theory was developed by Einstein, Bohr, Schr€odinger, Heisenberg, Dirac

and others, and given a uni¯ed formalization ¯rst by Diraca and later by von

Neumannb in the ¯rst third of the 20th century. It serves as a basis for understanding

quantum ¯eld theory, wherein Dirac again played a key role. By the end of the 20th

century, quantum information science, which was developed entirely within this

formalism, became a subject in its own right. In practice, it can be best understood as

a range of interferometric systems acting as realizations of speci¯cally quantum

mechanical physical communications layers, protocols, and algorithms. These are

primarily based on the use of the quantum information unit, the \qubit." The term

\qubit" originated with Benjamin Schumacher, who replaced \the classical idea of a

binary digit with a quantum two-state system…These quantum bits, or \qubits," are

the fundamental units of quantum information."1

The quantum di®erence from classical information arises from the superposition

principle of quantum mechanics. This means that, despite its being two-valued in the

chosen computational basis, a qubit system can be in one of an in¯nite number of

physically signi¯cant states: while a bit is capable of being in only one of two sig-

ni¯cant states at a given moment, a qubit system in general can be considered as

potentially being in one measurable state and the other opposite state at the same

time. In further contrast to classical states, a single unknown state of a qubit system

cannot generally be found by a single measurement, but rather requires an ensemble

of them to be determined. It is precisely the superposition of individual qubits that

provides the possibility of secure quantum key distribution, for example.

One striking consequence of superposition in quantum mechanics, is the possi-

bility of entanglement, in which the state of a composite system can not be factored

into a product of states describing each of its subsystems separately. To be more

aIn his The Principles of Quantum Mechanics.
b In his Mathematische Grundlagen der Quantenmechanik.
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speci¯c, consider a bipartite composite system, formed from the pair of subsystems A

and B; for example, A and B may be labels for two photons, two atoms, or any other

pair of quantum systems. These two systems may be separated by arbitrarily large

distances. We may then form the composite system A�B, whose Hilbert space is the

product of the two individual Hilbert spaces:HAB ¼ HA �HB. Consider a pure state

j ABi of the composite system. Then the state is said to be separable if it can be

written in some basis in the form j ABi ¼ j Ai � j Bi, where j Ai 2 HA nd

j Bi 2 HB. The state is then de¯ned to be entangled if it is not separable. We will

describe the consequences of entanglement and how it may be quanti¯ed in more

detail below. As we are primarily concerned here with optical systems, we will also

describe in detail the process of spontaneous parametric downconversion (SPDC),

which provides a convenient and versatile means of producing entangled pairs of

photons. As we introduce measures of information and of entanglement, we will apply

them to the downconversion process and its applications.

Our main focus is on quantum communication. The most thoroughly studied

application of quantum communications is quantum cryptography, also known as

quantum key distribution. After describing the basic ideas in this area, we move on to

a topic which has been less well studied from a quantum information theoretical

viewpoint, namely quantum imaging. We will take a broad view of the word com-

munication in order to include the reconstruction of images over a distance. In order

to quantify our ability to communicate, it will be necessary to investigate the amount

of information extracted per photon and the amount of entanglement per pair of

photons, as well as the amount of mutual information carried per pair. We will

exclusively discuss bipartite systems, i.e. those with two subsystems.

One related topic we will not discuss in detail is quantum computing, which

applies the quantum superposition principle to a collection of stored qubits, which

can be thought of as forming a compound quantum system. The space of possible

quantum states available to such multiple-qubit systems grows more rapidly than

does the space of states available to multiple-bit systems. The size of the parameter

space describing a quantum system for information encoding and computing grows

exponentially in the number of qubits— in a classical system it grows only linearly in

the number of bits. This also provides a unique sort of computational parallelism,

which can be harnessed to make tractable some important computational tasks that

are thought intractable using classical means only. This improvement in e±ciency is

known as \quantum speedup." Multiple-qubit states however are also very fragile,

being susceptible to decoherence e®ects.2,3 After a short period of time, the initially

pure quantum states described are inevitably altered by interactions with their

environments and must then be described instead by a mixed quantum states.

In the remainder of this section, we introduce basic notions of quantum commu-

nication theory in the context of quantum optics, including a detailed discussion of

spontaneous parametric down conversion, which is the principle source of entangled

optical states for experiments. Section 2 moves on to applications with a discussion of
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quantum cryptography, followed by a discussion of how the main ideas generalize

from the context of qubits to so-called qudits. Section 3 follows up by discussing a

speci¯c realization of qudits in the form of orbital angular momentum (OAM) states.

These same states are then applied in the context of imaging, leading to the idea that

the mutual information shared by entangled states may serve as probes of geometric

symmetries.

1.2. From bits to qubits

The properties of a qubit system are two-valued and can be probabilistically pre-

dicted like a classical system that randomly takes one of two computationally rele-

vant values. But unlike the classical system, which can only be in one of the two

states at any time irrespective of how it may be measured, a qubit can be in both

states simultaneously. The unit of classical information is sometimes referred in

quantum information science as c-bits.4 A putative inherently probabilistic bit can be

called a probabit.5 The probabilities of the outcomes of measurements of any classical

system are due only to ignorance of the actual state of the system. In the quantum

case, it arises also from a fundamental indeterminacy of properties, entirely so in the

case of the pure quantum states, de¯ned below. The quantum bit is, therefore, not

reducible to the probabilistic bit.c

Let us begin by considering various representations of qubit states. Recall that

quantum states are associated with a complex Hilbert vector space, H, via a special

class of linear operators acting in it, the statistical operators, �̂, constituting the

quantum state-space. For pure qubit states, the statistical operators are projectors

onto one-dimensional subspaces. The projective operators P ðj iÞ can be uniquely

associated with points on the boundary of the Bloch ball, known as the Poincar�e–

Bloch sphere. These states can also be, and typically are, represented by the state-

vectors

j i 2 H; ð1Þ

spanning them. The remaining states of the Bloch ball are essentially statistical or

mixed states, de¯ned as those which are not pure but still satisfy the de¯nition of

a density operator. The mixed states can be formed from these projectors by

appropriate linear combinations and lie in the interior of the Bloch ball. However,

the mixed states cannot be written as linear combinations of state vectors.

The set of statistical states available to a qubit system is representable by the

2� 2 complex Hermitian trace-one matrices

½�̂ij� 2 Hð2Þ: ð2Þ

cNote that we will here use \qubit" and \quantum bit" to refer to both physical systems on which quantum

information can be encoded, as well as to the quantum bit of information in the sense of information theory,

depending on context to make clear which is intended in any given instance.
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By contrast, for the full physical state description of a quantum system in spacetime,

an in¯nite-dimensional spatial representation is required in which the state-vectors

are called wavefunctions. Quantum information theory is based on the behavior of

qubits and has thus far overwhelmingly dealt with quantities with discrete eigenvalue

spectra in the non-relativistic regime, the state-vectors considered here are usually

taken to lie within ¯nite-dimensional Hilbert spaces constructed by taking the tensor

product of multiple copies of two-dimensional complex Hilbert space, or other ¯nite-

dimensional spaces. The Hilbert spaces considered here are only ¯nite-dimensional

subspaces of the larger full physical state-spaces of particles, the other subspaces of

which are rarely taken into account in the study of quantum information processing.

In many cases, we consider the polarization states or OAM states of photons, without

considering the corresponding full photon wavefunctions.

The purity, P, of a quantum state speci¯ed by the statistical operator �̂ is the trace

of its square,

Pð�̂Þ ¼ tr�̂ 2; ð3Þ
where 1

d � Pð�̂Þ � 1 and d is the dimension of the Hilbert space, H, attributed to the

system it describes. The quantum state is pure if Pð�̂Þ ¼ 1, i.e. if it spans a one-

dimensional subspace of H, one can then naturally de¯ne state mixedness as the

complement of purity, Mð�̂Þ � 1� Pð�̂Þ. The Unitary linear operators, U , are those

for which U †U ¼ UU † ¼ I, where \†" indicates Hermitian conjugation. Here,

the time-evolution is prescribed by the Schr€odinger equation, assuming a time-

independent Hamiltonian. (In general, temporal evolution in quantum mechanics is

not always so simple; cf. Sec. 2.1 of Sakurai.6) The purity and mixedness of a

quantum state are invariant under transformations of the form �̂ ! U �̂ U †, where U

is unitary, most importantly under the dynamical mapping Uðt; t0Þ ¼ e� i
}
Hðt�t0Þ,

where H is the Hamiltonian operator, which can readily be seen upon recalling that

the trace operation trð�Þ is cyclic. Pure states are those which are maximally speci¯ed

within quantum mechanics. A quantum state is pure if and only if the statistical

operator �̂ is idempotent, i.e.

�̂ 2 ¼ �̂; ð4Þ

providing a convenient test for maximal state purity. It is also a projector, P ðj iiÞ,
where j ii is the normalized vector representative of the corresponding one-dimen-

sional subspace of its Hilbert space. Rays cannot be added, whereas vectors j ii can
be, making the latter better for use in calculations involving pure states, where

superpositions are formed by addition. A Hermitian operator P acting in a Hilbert

space H is a projector if and only if P 2 ¼ P . It follows from this de¯nition that

P ? � I� P , where I is the identity operator, is also a projector. The projectors P and

P ? project onto orthogonal subspaces within H, Hs, and H?
s , respectively, thereby

providing a decomposition of H as Hs �H?
s ; two subspaces are said to be orthogonal

if every vector in one is orthogonal to every vector in the other. In the case of a
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general state of a single qubit, one may write �̂ ¼ p1P ðj iÞ þ p2Pðj ?iÞ, where the

weights pi are the eigenvalues of the statistical operator �̂.

A quantum state is thus mixed if it is not a pure state, that is, if Pð�̂Þ < 1. In the

Dirac notation, projectors are written

Pðj iiÞ � j iih ij: ð5Þ
Consider a ¯nite set, fPðj iiÞg, of projectors corresponding to distinct, orthogonal

pure states j ii. Any state �̂ 0 that can be written

�̂ 0 ¼
X
i

piP ðj iiÞ; ð6Þ

with 0 < pi < 1 and
P

ipi ¼ 1, is then a normalized mixed state. The superposition

principle implies that any (complex) linear combination of qubit basis states, such as

j0i and j1i, i.e.
j i ¼ a0j0i þ a1j1i ð7Þ

with ai 2 C and ja0j2 þ ja1j2 ¼ 1, is also a physical state of the qubit and is, as we

have seen, also a pure state. The scalar coe±cients a0 and a1 are called quantum

probability amplitudes, because their square magnitudes, ja0j2 and ja1j2, are the

probabilities p0 and p1, respectively, of the qubit described by state j i being found in

these basis states j0i and j1i, respectively, upon measurement.

The superposition principle is ultimately the source of many of the quantum

phenomena that we will use in the forthcoming Sections. In particular it underlies

entanglement, interference phenomena, and the inability to distinguish non-orthog-

onal states, all of which will be used for applications in Secs. 2 and 3. Consider the

normalized sums

j %i � 1ffiffiffi
2

p ðj0i þ j1iÞ and j &i � 1ffiffiffi
2

p ðj0i � j1iÞ: ð8Þ

of two orthogonal pure state-vectors j0i¼: ð1 0ÞT and j1i¼: ð0 1ÞT of a qubit, the r.h.s.'s

being given in the matrix representation and ð� � � ÞT indicating matrix transposition.

The superpositions in Eq. (8) are pure states, as can be immediately veri¯ed by

taking their square moduli. The corresponding projectors are P ðj %iÞ ¼ j %ih% j;
Pðj &iÞ ¼ j &ih& j. However, the normalized sum of a pair of projectors, for ex-

ample, P ðj0iÞ and P ðj1iÞ corresponding to pure states j0i and j1i, namely,

�̂þ ¼ 1

2
ðP ðj0iÞ þ P ðj1iÞÞ; ð9Þ

is a mixed state that can also be written

�̂þ ¼ 1

2
ðP ðj %iÞ þ P ðj &iÞÞ: ð10Þ

Finally, note that the statistical operator corresponding to the normalized sum of

j %i and j &i is P ðj0iÞ 6¼ �̂þ.
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The pure states of the qubit can be represented by vectors in the two-dimensional

complex Hilbert space, H ¼ C2. Any orthonormal basis for this space can be put in

correspondence with two bit values, 0 and 1, in order to act as the single-qubit

computational basis, sometimes also called the rectilinear basis, and written

fj0i; j1ig. The vectors of the computational basis can be represented in matrix

form as:

j0i¼: 1

0

� �
; j1i¼: 0

1

� �
: ð11Þ

Other commonly used bases are the diagonal basis, fj %i; j &ig, sometimes also

written fjþi; j�ig, and the circular basis fjri; jlig:

jri � 1ffiffiffi
2

p ðj0i þ ij1iÞ; jli � 1ffiffiffi
2

p ðj0i � ij1iÞ; ð12Þ

sometimes also written fjÒi; jÓig, is also useful for quantum cryptography, being

conjugate to both the computational and diagonal bases.

All three of the above bases are mutually conjugate and are used in protocols for

quantum key distribution (Sec. 2.2); the probabilities of qubits in the states jri and jli
being found in the states j0i, j1i, j %i, and j &i are all 1

2, and vice-versa. The generic

mixed state, �̂, lies in the interior of the Bloch ball, can be written as a convex

combination of basis-element projectors corresponding to the pure-state bases de-

scribed above. The e®ect of a general operation on a qubit can be viewed as a

(possibly stochastic) transformation within this ball; for illustrations of this in

practical context, see Ref. 7. The parametrization required to adequately describe

mixed states is now discussed in detail.

The density matrix and the Stokes four-vector, S�, are related by

�̂ ¼ 1

2

X3
�¼0

S���; ð13Þ

where �� (� ¼ 1; 2; 3) are the Pauli operators which, together with the identity

�0 ¼ I2, are represented in the matrix space Hð2Þ by the Pauli matrices. The Pauli

matrices form a basis for Hð2Þ, which contains the qubit density matrices. The qubit

density matrices themselves are the positive-de¯nite, trace-class elements of the set of

2� 2 complex Hermitian matrices Hð2Þ of unit trace, i.e. for which the total prob-

ability S0 is one, as prescribed by the Born rule for quantum probabilities and the

well-de¯nedness of quantum probabilities as such. Density matrices are similarly

de¯ned for systems of countable dimension. The non-trivial products of the four Pauli

matrices — those between the �i for i ¼ 1; 2; 3 — are given by

�i�j ¼ �ij�0 þ i�ijk�k; ð14Þ
which de¯nes their algebra. Appropriately exponentiating the Pauli matrices pro-

vides the rotation operators, Rið�Þ ¼ e�i��i=2, for Stokes vectors about the corre-

sponding directions i6; these rotations realize the group SOð3Þ.
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The Stokes parameters S� (� ¼ 0; 1; 2; 3) also allow one to directly visualize the

qubit state geometrically in the Bloch ball via S1;S2;S3. The Euclidean length of this

three-vector (also known as the Stokes vector, or Bloch vector) is the radius r ¼
ðS 2

1 þ S 2
2 þ S 2

3Þ1=2 of the sphere produced by rotations of this vector. With the

matrix vector ~� ¼ ð�1; �2; �3Þ and the three-vector ~S ¼ ðS1;S2;S3Þ, one has

�̂ ¼ 1

2
ðS0I2 þ S1�1 þ S2�2 þ S3�3Þ; ð15Þ

known as the Bloch-vector representation of the statistical operator, in accord with

Eq. (15). In optical situations, where ~S describes a polarization state of a photon, the

degree of polarization is given by P ¼ r=S0, where S0 is positive. For the qubit, when

the state is normalized so that S0 ¼ 1, S0 corresponds to total quantum probability.

The density matrix of a single qubit is then of the form

�̂¼: �00 �01
�10 �11

� �
; ð16Þ

where �00 þ �11 ¼ 1, �ii ¼ �	
ii with (i ¼ 0; 1), and �10 ¼ �	

10, where
	 indicates com-

plex conjugation. One can write the Pauli matrices for � ¼ 1; 2; 3 in terms of outer

products of computational basis vectors, as follows. The Stokes parameters are

expressed in terms of the density matrix as

S� ¼ trð�̂��Þ; ð17Þ
which are probabilities corresponding to ideal normalized counting rates of mea-

surements in the standard eigenbases.

1.3. Optical qubits

For speci¯city, let us now take the system in question to be a photon. Light is easy to

produce and to detect, and has properties that are both well understood and easily

controlled. As a result, most experiments in quantum information and communica-

tion are carried out on optical systems. Consequently, we will focus henceforth ex-

clusively on quantum optical systems. We begin by describing how optical qubits can

be created.

Consider the beam splitter (BS) shown in Fig. 1(a). A BS is a device for splitting a

single optical beam into two: a portion of the beam is transmitted through the BS,

while a portion is re°ected. Throughout, we assume that all BSs used are 50–50, i.e.

that equal amounts of light are re°ected and transmitted. We also consider only non-

polarizing BSs. A BS is a linear, passive four-port device, with two input ports (a and

b) and two output ports (c and d). To describe its action, we form the operator-

valued column vectors

â†

b̂
†

 !
and

ĉ†

d̂
†

 !
; ð18Þ
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where â †; b̂
†
; ĉ†; d̂

†
are the creation operators for photon states at the corresponding

ports. Then we may denote the action of the BS by a matrix T relating ingoing and

outgoing operators,

ĉ†

d̂
†

 !
¼ T

â†

b̂
†

 !
:

The form of this matrix is easy to determine: the photon is unchanged when it is

transmitted and picks up a phase of �2 when re°ected, so the BS matrix is

T ¼ 1ffiffiffi
2

p 1 i

i 1

� �
: ð19Þ

We may now think of photons entering or leaving from above the BS (i.e. ports a and

d) as representing state j0i, while those entering or leaving below the BS (i.e. b and c)

represent j1i states. This provides a representation of physical qubits as spatial

modes, and then allows us to think of the BS matrix T as taking combinations of

input bits to combinations of output bits. In particular, if a bit 0 is input, the resulting

output is the qubit 1ffiffi
2

p ðj0i þ j1iÞ. Thus, we have a simple way of producing spatial

qubits from classical bits.

We may form more general spatial qubits with the Mach–Zehnder interferometer

(Fig. 1(b)). This is equivalent to a double-slit-like arrangement where only two

directions are available to the self-interfering system, so that the exit ports of a BS act

as \slits". In this interferometer, a photon enters from the left into a BS, with two exit

paths on the right. It provides a spatial qubit, consisting of occupation of one and/or

the other interior beam path. Each path then encounters a mirror, a phase shifter, a

second BS, and ¯nally a particle detector. Since only the relative phase between arms

matters, the phase shift in one path can be set to zero without loss of generality. One

(a)

Mirror

Mirror

BS BS

ϕ

In Out

In

Out

(b)

Fig. 1. (a) A 50/50 beamsplitter. A photon entering either input port, a or b, has equal probability of

being transmitted or re°ected out either output port, c or d. (b) The Mach–Zehnder interferometer

providing a range of qubit states as the input qubit amplitudes ai and phases �i are changed. The detectors
provide count rates proportional to the probability of lying in the output computational-basis states

described by state-projectors Pðj0iÞ and P ðj1iÞ, for input amplitudes a0 ¼ 0, a1 ¼ 1, namely, pð0Þ ¼
sin2½ð�0 � �1Þ=2� and pð1Þ ¼ cos2½ð�0 � �1Þ=2�.
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can also use this interferometer to prepare a phase qubit by selecting only those

systems entering a single initial input port and exiting a single ¯nal output port.

The action of the interferometer may be described by the matrix B ¼ T�T , where

T is the BS matrix above and the phase shift is described by the matrix

� ¼ ei� 0

0 1

� �
: ð20Þ

Multiplying out the matrices, we ¯nd that the action on an incoming bit j0i is:

j0i ! 1

2
½ðei� � 1Þj0i þ iðei� þ 1Þj1i�; ð21Þ

allowing construction of a family of phase qubits.

Rather than spatial or phase qubits, we may consider superposition states of some

other degree of polarization. A common choice is the polarization qubit, such as

j i ¼ a0j " i þ a1j !i; ð22Þ
or in the diagonal basis:

j i ¼ a 0
0j %i þ a 0

1j &i: ð23Þ
The next subsection shows one means of creating entangled polarization qubits. A

further type of optical qubit, formed from superpositions of OAM states is considered

in Sec. 3.

1.4. Spontaneous parametric down conversion

The most reliable and versatile means of producing entangled photon pairs is via

spontaneous parametric down conversion (SPDC) inside a nonlinear crystal, such as

	-barium borate (BBO) or potassium titanyl phosphate (KTP). In this process, a

high frequency incoming photon (the pump) is converted into a pair of lower fre-

quency outgoing photons (known for historical reasons as the signal and idler pho-

tons). Although the signal and idler beams are individually spatially and temporally

incoherent, the signal and idler are mutually coherent, in the sense that the two

photons in a given pair always leave the interaction point with a stable relation

between their phases. The resulting photons are entangled in a number of di®erent

variables: position, momentum, frequency, time, polarization, and OAM. In fact, the

eigenstates of these multiple variables for the two photons are intertwined through

entanglement; for example, the joint signal polarization-idler momentum states are

entangled, a phenomenon which is known as hyperentanglement.8–10 Note that the

output is entangled in both continuous and discrete degrees of freedom. In later

sections, we will use the entangled state produced in down conversion for several

communication and cryptography applications; this state has found a number of

other uses in diverse areas such as dispersion and aberration cancelation, quantum

optical coherence tomography, and precision measurement of polarization mode

dispersion.11–19
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When an electric ¯eld is applied to a material with a nonlinear response, the

polarization may be expanded in powers of the ¯eld. Here we concentrate on the

second-order term, P̂
ð2Þ
i ¼ 


ð2Þ
ijkÊjÊk, where the indices label spatial components and

repeated indices are summed over. The corresponding interaction Hamiltonian is

Ĥ intðtÞ ¼ �0

Z
d3rP̂

ð2Þ � Ê ¼ �0

Z
d3r


ð2Þ
jklÊpj Êsk Ê il: ð24Þ

The labels p, s, i have been added to distinguish the pump, signal and idler ¯elds. We

may expand each ¯eld in terms of plane wave components,

Êjðr; tÞ ¼
Z

d3k½Ê�ðkÞe�ið! t�k�rÞ þ Ê
þðkÞeið! t�k�rÞ�; ð25Þ

where, for quantization volume V , the positive and negative frequency parts are

given by

Ê
ð�Þ
j ðkÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
2�}!

V

r
â †
j ðkÞ; Ê

ðþÞ
j ðkÞ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffi
2�}!

V

r
âjðkÞ: ð26Þ

Substituting Eqs. (25) and (26) into Eq. (24) and keeping only the terms that give a

non-zero result when wedged between a one-photon incoming state and two-photon

outgoing state, the result is:

Ĥ intðtÞ ¼ C

Z
d3ksd

3kie
ið!p�!s�!iÞt

Z L

0

dzeiðkpz�ksz�kizÞz

�
Z
A

d2r?eiðks?þki?Þr? â †ðksÞâ†ðkiÞ þ h:c: ð27Þ

Here we have assumed that the incoming intensity is high enough to treat the pump

as a classical ¯eld, and we have swept all of the overall constants into a single

constant, C . It has also been assumed that the pump is a plane wave aligned along

the z-axis, with no transverse momentum. In addition, the
ffiffiffi
!

p
terms coming from

Eq. (26) are very slowly varying compared to the exponentials, and so were treated as

constants. L is the length of the crystal in the z direction, and A is the area of the

interaction region, i.e. the region of the crystal where the pump is intense enough for

signi¯cant downconversion to take place. Since the interaction area A is normally

much larger than the wavelength, we may approximate by taking A ! 1, making

the transverse integral trivial:Z
A

d2r?eiðks?þki?Þ�r? ¼ 2�� ð2Þðks? þ ki?Þ: ð28Þ

De¯ning the longitudinal momentum mismatch, �k ¼ kpz � ksz � kiz, the longi-

tudinal integration may also be carried out:

�ð�kLÞ �
Z L

0

dzei�kz � 2ei�kL
sin �kL

2

�kL
¼ ei�kLsinc

�kL

2

� �
; ð29Þ
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where the sinc function is de¯ned by sincðxÞ ¼ sinx
x . In the limit of a long crystal,

L ! 1, this phase-matching function becomes a delta function for the longitudinal

momenta: limL!1�ð�kLÞ ¼ ��ð�kÞ.
The result, ¯nally, is that the relevant part of the interaction Hamiltonian may be

written as:

HintðtÞ ¼ C 0
Z

d3ksd
3ki�ð�kLÞeið!p�!s�!iÞt� ð2Þðks? þ ki?Þâ†ðksÞâ†ðkiÞ þ h:c: ð30Þ

This, of course, must be supplemented by the appropriate dispersion relations con-

necting the frequencies to the wavevectors in the birefringent crystal. The resulting

phase matching conditions (equivalent to energy–momentum conservation) that

must be satis¯ed by the outgoing ¯elds are thus dependent on the polarizations of the

photons. The down conversion is called Type I if the signal and idler have the same

polarization (opposite to the pump), and Type II if the signal and idler have opposite

polarizations to each other. Henceforth, we assume Type II parametric down con-

version, e ! fe; og, with o being the idler and the pump and signal both being

e-polarized. (o and e denote ordinary and extraordinary polarizations.)

For a weak interaction Hamiltonian Ĥ int which is only non-zero for times in the

interval �T < t < T , perturbation theory tells us that Ĥ int will transform an initial

vacuum state (before the interaction) jvaci into a new state j�i afterwards:

j�i ¼
Z T

�T

dte�
i
}
Ĥ inttjvaci ¼ ð1� i

}

Z T

�T

dtHint þ � � � Þjvaci: ð31Þ

Taking T ! 1, the time integration becomes
R1
�1 dteið!p�!s�!iÞt ¼ 2��ð!p � !s

�!iÞ. Using the Hamiltonian of Eq. 30, we have the biphoton state:

j�i ¼ � iC 0

}

Z
d3ked

3ko�ð!e þ !o � !pÞ

� � ð3Þðks? þ ki?Þ�ð�k LÞâ†HðkeÞâ †
V ðkoÞjvaci: ð32Þ

Using the dispersion relations, the k integrations may be rewritten as frequency

integrations, so:

j�i ¼
Z

d!ed!oe
�i�kL=2Eð!e þ !oÞ�ð!e; !oÞj!eiH j!oiV ; ð33Þ

where we have generalized the situation to include a non-plane-wave pump with

envelope Eð!pÞ ¼ Eð!e þ !oÞ. The momentum mismatch is now written in terms of

frequency:

�k ¼ 1

c
nð!pÞ!p � nð!eÞ!e � nð!oÞ!o

� �
: ð34Þ

Due to the non-factorability of �ð!e; !oÞ into a product of terms each involving

only one of the frequencies, the state of Eq. (33) is clearly entangled in terms of the

various frequency states. It is also entangled in polarization; in particular, if the
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frequencies are held ¯xed (by means of ¯lters, for example), we have j�i ¼
1
2 ½jHisjV ii þ jV isjHii�. The latter is a realization of the well-known Bell state j þi,
i.e. a maximally entangled bipartite state.

We now look at several ways of quantifying the entanglement of the biphoton

state.

1.5. Concurrence in down conversion

If the state of a system is known, then one readily computable measure of entan-

glement is the concurrence. Given a two-qubit pure state j�i on Hilbert space

HA �HB, de¯ne the spin-°ipped state j~�i ¼ �
ðAÞ
2 � �

ðBÞ
2 j�i. More generally, the

spin-°ipped state corresponding to two-qubit state �̂ is ~� ¼ �
ðAÞ
2 � �

ðBÞ
2 �̂�

ðAÞ
2 � �

ðBÞ
2 .

Let �1 
 �2 
 �3 
 �4 denote the eigenvalues of the density operator
ffiffiffiffiffiffi
�̂ ~�

p
, in des-

cending order. Then the concurrence of the bipartite system is de¯ned to be

C ¼ maxf0; �1 � �2 � �3 � �4g: ð35Þ
For a pure state, this reduces to an inner product: C ¼ h�j~�i. (A more general

de¯nition applying to bipartite systems of arbitrary dimension can be given.5)

The concurrence in the frequency spectrum of Type II SPDC has been calculated

by Grice and Walmsley20 in approximate form and more exactly by Erenso.21 Here

we follow the latter.

If the spectral bandwidth of downconversion is relatively small, the phase

matching function �ð!1; !2Þ is approximately symmetric in the frequencies. However,

due to the birefringence of the crystal, the function necessarily shows noticeable

asymmetry at larger bandwidths. As a result, we write the Type II two-photon down

conversion state as:

j�i ¼ C

Z
d!ed!oEð!e þ !oÞð�ð!e; !oÞj!eiH j!oiV þ �ð!o; !eÞj!oiH j!eiV Þ; ð36Þ

where

�ð!e; !oÞ ¼
sinð½koð!oÞ þ keð!eÞ � kpð!o þ !eÞ�LÞ
½koð!oÞ þ keð!eÞ � kpð!o þ !eÞ�L

ð37Þ

and we take the spectral envelope function of the pump to be

Eð!e þ !oÞ ¼ exp � ½2!0 � ð!o þ !eÞ�2
s�2

p

� �
: ð38Þ

Here, 2!0 and �p are the central frequency and bandwidth of the pump. Expanding ke
and ko about !0, and kp about 2!0, we ¯nd that

�ð!1; !2Þ ¼
sinð�1
1 þ �2
2Þ
½�1
1 þ �2
2�L

: ð39Þ

In the latter expression, 
j ¼ !j � !0 (for j ¼ 1; 2) are the frequency detunings of the
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two photons, while � j ¼ ð@kp@! j!¼2!0
� @kj

@! j!¼!0
Þ L are the di®erences in time delay

of the pump photon relative to photon j during transit through the crystal. So the

state is

j�i ¼ N
Z

d
ed
o fð
e; 
oÞj!eiH j!oiV þ fð
o; 
eÞj!oiH j!eiVf g; ð40Þ

where

fð
i; 
jÞ ¼ N e
�ð
iþ
jÞ2

2� 2p
sinð½�1
1 þ �2
2�Þ
½�1
1 þ �2
2�L

: ð41Þ

Computing the density operator and its eigenvalues, the concurrence is then given by

C ¼ N 2

Z
d
ed
oe

�ð
eþ
oÞ2
2�2p

sinð½�1
e þ �2
o�Þ
½�1
e þ �2
o�L

sinð½�1
o þ �2
e�Þ
½�1
o þ �2
e�L

: ð42Þ

This expression may be readily plotted as a function of transit times for a given

pump beam and crystal. Examples of such plots were constructed by Erenso,21 in

which it can be seen that when the transit time of the pump beam through the

crystal is small compared to that of the signal and idler, the concurrence is close to

one. As the pump transit time decreases relative to the others, the concurrence

decays. Thus, one means to control the degree of spatial entanglement is to alter the

frequency and polarization dependence of the index of refraction, thus altering the

transit times.

1.6. Schmidt number and von Neumann entropy

One of the most useful tools in quantum information theory is the Schmidt decom-

position.22 In Schmidt form, a bipartite state vector is \diagonal", in the sense that

the basis vectors of the ¯rst and second Hilbert spaces are matched up in one-to-one

fashion,

j�i ¼
Xdmin

i¼1

ffiffiffiffiffi
�i

p
juiijvii; ð43Þ

where dmin is the dimension of the smaller of the two Hilbert spaces. �i is the ith

eigenvalue of the density matrix, and so gives the probability of measuring the ith

term in the expansion, pi ¼ �i. The quantum correlations present in entangled

systems are now manifest, in this form: whenever the ¯rst system is measured to be

in state juii, the second system is guaranteed to be in state jvii. The number of

non-zero terms in the expansion is known as the Schmidt number, K , and serves as

a simple measure of entanglement: K ¼ 1 for an unentangled product state, and

increasing with increasing number of entangled states in the sum. Interpreting �k as

the probability of the kth state, the average probability per state in the sum is
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P
kpðkÞ�k ¼

P
k�

2
k, so the average e®ective number of non-zero components in the

decomposition is 1=
P
� 2
i . Thus, if the Schmidt decomposition is known, then the

Schmidt number can be computed from the coe±cients23:

K ¼ 1

�X
� 2
i ð44Þ

Being essentially a count of available states, the Schmidt number is bounded above

by the number of states that can ¯t into the phase space volume accessible to the

system. So K is ¯nite, even for continuous degrees of freedom, as long as the available

phase space volume is ¯nite.

Once the system is put into Schmidt form, the von Neumann entropy can then be

computed:

Sð�̂Þ ¼ �tr�̂log2�̂ ¼ �
X
i

�i log2�i: ð45Þ

The von Neumann entropy is a measure of the mixedness of a state: Sð�̂Þ ¼ 0 for a

pure state �̂ ¼ j ih j and attains a maximum of log2d for the maximally mixed state

�̂ ¼ 1
d Î . The von Neumann entropy is the quantum analog of the Shannon entropy to

be discussed in the next section, and is essentially a measure of the information

gained by measurement of the state. An explicit recipe can be constructed for putting

a state into Schmidt form. Consider some pure state j�i ¼PijCijju 0
iijv 0

ji, so that the
density operator is of the form

�̂ ¼
X
ijkl

CijC
	
klju 0

iihu 0
kj � jv 0

jihv 0
lj: ð46Þ

We ¯rst rotate from the ju 0
ii basis to the basis juii in which �̂u ¼ trv�̂ is diagonal.P

ijCijC
	
kl ¼ �ikjgij2 in this basis, for some constants gi, and �̂u ¼Pijgij2juiihuij. For

each non-zero gi, we also de¯ne a new basis for the second Hilbert space,

jvii ¼
P

j
Cij

jgijjv
0
ji. We then ¯nd that

�̂ ¼
X
ik

jgijjgkjjuiihukj � jviihvkj ¼ j�ih�j; ð47Þ

with corresponding state vector j�i ¼ jgijjuiijvii, which is of Schmidt form. There-

fore,
ffiffiffiffiffi
�i

p ¼ jgij.
The two-photon state in Type II SPDC can be written

j i ¼
Z

�ð!1; !2Þa†Hð!1Þa†
V ð!2Þj0iH j0iV d!1d!2; ð48Þ

and the spectral amplitude Að!1; !2Þ then decomposed into Schmidt form:

Að!1; !2Þ ¼
X
n

ffiffiffiffiffiffi
�n

p
 nð!1Þ�nð!2Þ; ð49Þ
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where the eigenvalues and eigenfunctions �n,  n, and �n are solutions to the integral

equations Z
K1ð!; ! 0Þ nð! 0Þd! 0 ¼ �n nð!Þ; ð50ÞZ
K2ð!; ! 0Þ�nð! 0Þd! 0 ¼ �n nð!Þ: ð51Þ

The integral kernels in these equations are given by

K1ð!; ! 0Þ ¼
Z

Að!; !2ÞA	ð! 0; !2Þd!2; ð52Þ

K2ð!; ! 0Þ ¼
Z

Að!1; !ÞA	ð!1; !
0Þd!1: ð53Þ

The eigenfunctions  n and �n can be used to de¯ne a new set of e®ective creation

operators for horizontally and vertically polarized photons,

b̂
†
n ¼

Z
 nð!1Þâ†Hð!1Þd!1; ĉ †

n ¼
Z
�nð!2Þâ†V ð!2Þd!2: ð54Þ

In terms of these, we can rewrite the Schmidt decomposition of the biphoton state as

j i ¼
X
n

ffiffiffiffiffiffi
�n

p
b̂
†
nĉ

†
njvaciH jvaciV : ð55Þ

For SPDC, we may split the amplitude into a pump envelope and a phase-matching

function �: Að!1; !2Þ ¼ ~Eð!1 þ !2Þ�ð!1; !2Þ. Law, Walmsley, and Eberly24 have

calculated the eigenvalues for this case and found that the sizes of the terms in the

sums of Eqs. (49) and (55) drop rapidly, leaving only a small number of eigenvalues of

non-negligible size. As a result, the e®ective Schmidt number K of the spectrally-

entangled system is in fact relatively small. In fact, for the parameter values they

used, the authors found that 96% of the state could be accounted for by the ¯rst six

eigenvalues. The von Neumann entropy computed from these ¯rst six eigenvalues

gives a value S ¼ 1:4, compared to the large K limit of 1:8. By narrowing the

bandwidth, correlations between the spectral components increases. As a result, the

von Neumann entropy and the e®ective Schmidt number both increase. Bandwidth

therefore determines the level of entanglement present in the current situation.

Rather than frequency entanglement, we can take a similar approach to quantify

the entanglement in some other degree of freedom, for example the spatial entan-

glement carried by the momentum vectors. This was investigated by Law and

Eberley,25 as follows. Let k and q be the transverse spatial momenta of the two

photons. (Transverse here means perpendicular to the direction of the pump beam,

taken to be along the z-axis.) As a simple model of downconversion that allows

analytic calculation of the Schmidt number, take the biphoton amplitude in trans-

verse momentum space to be of Gaussian form,

Aðk; qÞ ¼ Eðkþ qÞ�ðk� qÞ ¼ Cge
�jkþqj 2

� 2 e�b 2jk�qj 2 ; ð56Þ
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where the two terms represent the pump envelope and the phase matching function

in momentum space. For this form, the Schmidt number can be found exactly25:

K ¼ 1
4 ðb�þ 1

b�Þ2. The degree of entanglement thus depends only on b�, the ratio of

widths of the two exponentials. K increases whenever b�� 1 or b�� 1, with a

minimum at b� ¼ 1.

The Gaussian form given above is unrealistic. A more realistic approximation for

the amplitude is given by replacing the second exponential (the phase-matching

term) by a sinc function, as we have seen in Sec. 1.4:

Aðk; qÞ ¼ Epðkþ qÞ�ðk� qÞ ¼ Cge
�jkþqj 2

� 2 sincðb2jk� qj2Þ; ð57Þ
where b2 ¼ L=4kpump. The Schmidt number now has to be calculated numerically,

but the result is qualitatively similar to the Gaussian model, with K becoming large

whenever b� is either much larger or much smaller than 1.25 Thus, spatial entan-

glement can be increased by, for example, increasing the transverse momentum

spread. For some parameter ranges, the e®ective number of states K can be in the

hundreds, but not all of these states are necessarily accessible. We will return to this

issue in Sec. 3.

The analysis of Law and Eberly25 has been generalized by van Exter et al.26

Among other things, these authors showed that a one-dimensional Schmidt number

K1d can be calculated for photon pairs con¯ned to propagate in a single plane, and

that the full two-dimensional Schmidt number is simplyK2d ¼ K 2
1d. They also added

in the e®ect of a ¯nite-sized detection aperture (diameter a), showing that in this case

K2d ¼ ð1=�2 þ b2 þ a2Þ2
ð1=�2 þ b2 þ a2Þ2 � ð 1

�2 � b2Þ2 : ð58Þ

This decreases asymptotically to K2d ¼ 1 as a ! 1, demonstrating the role of

spatial ¯ltering by the detector and reminding us that the degree of entanglement, as

well as the information content, will be dependent on our measuring devices and is

not entirely intrinsic to the system being measured.

How is the Schmidt number measured experimentally? It can be shown27 that for

transverse spatial modes in the quasi-homogeneous approximation, the Schmidt

number can be written in a form analogous the �etendue28 of an optical system:

K ¼ 1

�2

½R ISðxÞdx�2R
I2SðxÞdx

� ½R IFFð�Þd��2R
I2FFð�Þd�

; ð59Þ

where IS and IFF are the near-¯eld (source) and far-¯eld intensities. Thus intensity

measurements in two planes su±ce to determine the Schmidt number.

The Schmidt number for the output of SPDC depends strongly on the prop-

erties of both the pump beam and the crystal. For some parameter ranges, it can

be extremely large; for example, in the experiment of Dixon et al.,29 the number of

product states superposed in the outgoing spatially-entangled biphoton state was

K 
 1400! In contrast, we have seen that for the parameter values considered by
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Law, Walmsley, and Eberly,24 the e®ective number of polarization-entangled terms

was very small, on the order of K � 2. This is one of the reasons that down

conversion is such an important source for optical experiments: by appropriately

tuning the input parameters or measuring di®erent variables, we can exert a great

deal of control over the output state and can vary its properties over a very wide

range.

1.7. Other measures of entanglement

Many other measures of entanglement have been de¯ned (see Plenio and Virmani30

for comprehensive reviews). Here, we brie°y mention a couple of these.

For a bipartite system on a Hilbert space HA �HB, the partial transpose

operations TA or TB consist of taking the transpose of the part of an operator's action

only on one of the two subsystems. Thus, for example, the partial transpose of a

density operator relative to the A subsystem is de¯ned by hiAjBj�̂ TA jkAlBi ¼
hkAjBj�̂jiAlBi: According to the Peres-Horode�cki criterion,31,32 a system is entangled

if (either) partial transpose of the density matrix is negative. This can be associated

with a numerical measure by de¯ning the negativity:

Nð�̂Þ ¼ 1

2
ðjj�̂ TA jj1 � 1Þ; ð60Þ

where jjÔjj1 � tr
ffiffiffiffiffiffiffiffiffiffi
O†O

p
is the trace-norm of Hermitian operator O. This may also be

expressed as Nð�̂Þ ¼ jPi�ij, where �i represent the negative eigenvalues of �̂ TA . The

negativity is bounded by the concurrence, Nð�̂Þ � cð�̂Þ.
A further fundamental entanglement measure that can be related to the concur-

rence is the entanglement of formation: Efð�̂Þ ¼ hðcð�̂ÞÞ, where hðxÞ ¼ �xlog2x�
ð1� xÞlog2ð1� xÞ; see Ref. 5 for more information.

2. Communication and Cryptography

2.1. Information and channel capacity

In the 1940's, the major problems in telecommunications included the questions of

how to quantify the amount of information being carried on a communication

channel, how to determine what the maximum information a given channel could

carry, and how to understand the e®ect of noise on information capacity. These

questions were largely answered by Shannon and his contemporaries. Here we brie°y

discuss these questions and their generalizations to quantum theory. Then in the

following subsections, we look at some communication phenomena that exist only in

the quantum case.

The most basic quantity in classical information theory is the Shannon entropy.

Given random variable X , we will denote the possible values that it can take by

x1;x2;x2; . . .; x will be used to denote a generic value. These values occur according to

some probability distribution pðXÞ. We will restrict ourselves here to discrete
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distributions for simplicity. Then the Shannon entropy associated with variable X is

HðXÞ ¼ �
X
i

pðxiÞlog2pðxiÞ ¼ �E½log2ðXÞ�; ð61Þ

where E denotes expectation value or mean.

The signi¯cance of HðXÞ is that it tells you the \surprise value" or average

amount of new knowledge you gain from a measurement of X . For example, consider

a variable X which can take on two values x1 and x2. If pðx1Þ ¼ 1 and pðx2Þ ¼ 0 (a

state of maximal a priori knowledge), then the Shannon information vanishes; this is

as expected from the fact that we know X will always take the value x1, so a

measurement tells us nothing new. In contrast, if pðx1Þ ¼ pðx2Þ ¼ 1
2 (the state of

maximal a priori uncertainty) the entropy reaches its maximum value (HðXÞ ¼
log2 2 ¼ 1), since in this case we learn the most from each measurement.

The entropy depends only on the probability distribution associated with the

random variable,HðXÞ ¼ HðpðXÞÞ, is concave, and is non-negative:HðXÞ 
 0 for all

X , with equality if and only if only a single value of X has non-zero probability.

Conceptually, the Shannon entropy is a measure of how much redundancy is oc-

curring in a message, or equivalently how much the message can be compressed. This

is the content of the Shannon noiseless coding theorem: a message of length n can be

coded by a string of only nH bits, as n ! 1.

Similarly, the Shannon noisy coding theorem tells how much additional redun-

dancy must be encoded into a message transmitted over a noisy channel in order to

allow for error correction. For the simplest case, a binary symmetric channel with

error probability q per bit, the theorem says that each binary digit may carry no more

than 1� hðqÞ bits of information, where hðqÞ ¼ qlog2ðqÞ þ ð1� qÞlog2ð1� qÞ is the

entropy of the error probability distribution. hðqÞ serves as a measure of the amount

of redundancy that must be built into a message to enable error correction.

The von Neumann entropy was introduced in the last section, and can be viewed

as the quantum analog of the Shannon entropy for a quantum state �̂:

Sð�̂Þ ¼ �tr�̂log2�̂ ¼ �
X
i

�i log2�i; ð62Þ

where the �i are the Schmidt coe±cients. Sð�̂Þ is a measure of the mixedness of the

state: for a system of dimension n, the von Neumann entropy is bounded by

0 � Sð�̂Þ � log2n, with the lower limit reached by pure states and the upper limit

achieved for the maximally mixed states �̂ ¼ 1
n Î .

For a statistical mixture of states �̂ ¼Pipi �̂i it can be shown thatX
i

piSð�̂iÞ � Sð�̂Þ � Hðp1; . . . ; pnÞ þ
X
i

piSð�̂iÞ: ð63Þ

The left-hand inequality simply expresses the concavity of the von Neumann entropy;

as for the right hand inequality, the ¯rst term on the right describes the classical

uncertainty due to the statistical mixture of the states, while the second term
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describes the uncertainty inherent in the quantum states themselves. If the �̂i are

pure states, the latter terms vanish, so that Sð�̂Þ � Hðp1; . . . ; pnÞ; thus the quantum
uncertainty is less than the uncertainty of the corresponding classical system. This

is a re°ection of the fact that quantum systems can contain correlations stronger

than the ones that are possible classically, as re°ected by the well-known Bell

inequalities.33,34

The von Neumann entropy to a large extent plays a role in quantum systems

similar to that of the Shannon entropy in classical systems. For example, there is a

theorem (the Schumacher theorem1) for quantum systems analogous to that of the

Shannon noiseless coding theorem, with S replacing H .

Rather than investigating the formal properties of entropy and information in

detail, we move on in the next Section to discuss attempts to communicate secretly

by means of encryption keys shared between two parties. We will see that the laws of

quantum mechanics will prevents an eavesdropper from gaining information about

the key without causing disturbances that can be detected by the communicating

parties.

2.2. Quantum key distribution

The goal is to generate a secret key for encrypting and decrypting messages that is

shared between two legitimate users, usually known as Alice and Bob, and which

cannot be broken by an eavesdropper, usually called Eve. The only truly unbreakable

code is the one-time pad or Vernam cipher in which the secret key k is a random

string of binary digits which is used only once, and then discarded. If the text to be

encoded is given as a binary string m, then the encoded message is given by m� k,

where � is base-two addition. To decode the message, Bob simply adds the same key

to the encoded message: since k� k ¼ 0, it follows that m� k� k ¼ m. The ran-

domness of the key means that there are no patterns that can be used to break the

code: the key has the maximum possible entropy and carries no information. How-

ever, if the same key is used multiple times, detectable patterns in the messages

themselves will cause correlations in the sum m� k, which in principle can leak

information about the messages. Therefore, it is essential that each key not be reused.

Although the key itself is unbreakable, there is still the problem of distribution: Alice

and Bob must use the same key, so Eve may be able to intercept the passing of the

key from one to the other, destroying the security of the message.

The Vernam cipher solves the problem of encrypting a message in an unbreakable

manner, once the participants share a random key. However, this does not solve the

problem of distributing the key among the legitimate users without it being inter-

cepted. Classically there is no foolproof means for completely secure key distribution;

this is where quantum mechanics becomes essential. In quantum cryptography or

quantum key distribution (QKD), the goal is to generate a one-time encryption key

and to share it between the two legitimate users, Alice and Bob, while using the laws

of quantum mechanics to prevent illegitimate eavesdroppers from obtaining the key
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undetected. We will see that, although the eavesdropping itself is not preventable, it

will always be possible to detect it if it is occurring, so that it will be ine®ective. If Eve

is detected, Alice and Bob know their communication line has been compromised, so

they must stop using it and seek another communication channel.

What makes QKD possible is the existence of non-commuting operators in

quantum mechanics. Suppose we have two Hermitian operators Ô and Ô 0
which fail

to commute: ½Ô; Ô 0� 6¼ 0. We assume that either (i) Alice prepares a state, makes a

measurement on it and sends it to Bob, or else (ii) a third party sends an entangled

pair of states (half of the pair to Alice, the other to Bob), in which the values of the

relevant operators are either correlated or anticorrelated between the two states.

Alice chooses randomly to measure the value of either Ô or Ô 0
on the state, obtaining

some value oA which is an eigenvalue of whichever operator was used. This deter-

mines the value oB Bob will measure if he measures the same operator. However, if he

measures the other operator, the value he obtains is random (indeterminate), due to

the fact that Ô and Ô 0
are incompatible observables. The operators should be chosen

so that application of one operator makes all possible eigenvalues of the other equally

likely; such operators are called mutually unbiased, conjugate, or incompatible. The

communication procedure then consists schematically of the following steps: (i) Alice

generates a sequence of states. (ii) For each state, she randomly chooses Ô or Ô 0
and

makes a measurement. (iii) Bob then randomly chooses Ô or Ô 0
for each state and

also makes a measurement. (iv) Alice and Bob then communicate over a classical

communication channel. This channel can be completely public. They tell each other

which measurement operator they chose for each state, but not the result of the

measurement. (v) They keep only those values for which they made the same choice,

discarding the rest. This process is called sifting. (vi) They randomly select a subset of

the sifted trials to subject to a security check. They compare the values obtained on

these trials, and check to see if the these values have the correlation (or antic-

orrelation) expected. Unexpected drops in correlation signal the activity of an

eavesdropper. (vii) If the security trials have the expected level of correlation, then

they can be certain that no eavesdropping occurred. They can therefore use the

values they measured on the remaining trials (after sifting and security trials) as the

digits of the one-time key. Although they have not told each other their values, the

fact that they measured the same operator on these correlated or anticorrelated

states guarantees that each can deduce the other's value from their own.

This procedure is safe, because if Eve is intercepting the states and making her

own measurements, she has no way of knowing whether Alice chose to measure Ô or

Ô 0
on each trial. She has to guess, and has only a 50% probability per trial of guessing

correctly. Suppose on a given trial Alice measures Ô. Then if Eve also measures Ô,

she will measure the correct value oA and can generate a copy of the state to send to

Bob. Bob (if he also measures Ô) will also determine the value oA, and so the

tampering will not be detected. But when Eve chooses to measure the wrong operator
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Ô 0
, she will sometimes (let us say with probability p, where p < 1) measure the

correct value oA, but will also sometimes measure an incorrect value o 0
A with prob-

ability 1� p. When this happens, it will show up during the security check: instead of

Alice and Bob agreeing 100% of the time when they used the same operator, they will

¯nd that they now only agree on a fraction pþ1
2 of the trials. This drop in correlation

between their values immediately signals the presence of an eavesdropper. (The

strategy used here by Eve is called the intercept-resend strategy. It is the simplest

type of eavesdropping attack. More sophisticated attacks are also possible, which

may require additional safeguards.35–39)

To make the protocol as safe as possible, we want the overlap between each

eigenstate of one operator with all of the eigenstates of the other to be as uniform as

possible, i.e. we want mutually unbiased operators. In the most common case, the

di®erent operators represent projections onto polarization states measured along the

axes of di®erent bases. For example, Ôj ¼ j jih jj and Ô 0
k ¼ j 0

kih 0
kj. In that case,

we specify the di®erent operators by specifying the bases, and the eigenvectors rep-

resent the basis vectors. For the case of two incompatible bases, the best possible

choice is h ij 0
ji ¼ 1ffiffi

2
p for all i 2 f1; 2g and j 2 f1; 2g (so that p ¼ 1� p ¼ 1

2). Here,

j ii and j 0
ji are respectively the eigenvectors of Ô and Ô 0

. More generally, we may

use m incompatible operators Ô1; . . . ; Ôm, such that

h ð�Þ
i j ð
Þ0

j i ¼ 1ffiffiffiffiffi
m

p ; ð64Þ

for all i; j 2 f1; 2g and all �; 
 2 f1; 2; . . .mg. (The superscripts �; 
 label the oper-

ator, while subscripts i; j label the states within the set of eigenstates of each oper-

ator.) Bases satisfying the conditions Eq. (64) are called mutually unbiased or

conjugate bases. Mutually unbiased bases are such that a measurement in one basis

gives no information about the value in the other basis: a measurement in one basis

completely randomizes values in the other, with a uniform probability distribution

(for a review of mutually unbiased bases and their construction, Durt et al.40).

To make this more concrete, let us consider the ¯rst successful QKD method,

invented by Bennet and Brassard41 which is known as the BB84 protocol. Here, we

take the states to be polarization states of a photon, and the operator Ô to be the

polarization operator in a coordinate system de¯ned by a pair of perpendicular axis,

the horizontal (H) and vertical (V ) axes. We take oA ¼ 0 if the polarization is

horizontal and oA ¼ 1 if it is vertical, with corresponding eigenvectors j0i ¼ jHi and
j1i ¼ jV i. The second operator Ô 0

, incompatible with Ô, is the polarization operator

in a system de¯ned by two axes (j %i and j &i) at � 45� to the horizontal. We will

denote the eigenvectors j0 0i ¼ j %i and j1 0i ¼ j &i, and the eigenvalues o 0
A ¼ f0; 1g.

These two bases are clearly mutually unbiased.

To generate a secure key, Alice randomly selects one of the two bases for each

photon and makes a measurement of the polarization in that basis. She then sends
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the photon on to Bob, who similarly makes a random choice among the two bases and

measures polarization. If they both chose the same basis, then they should always

measure the same value for polarization. However, if they make di®erent choices,

then (due to the incompatibility of the bases), the result of Bob's measurement

should be completely random and independent of the basis. This is the key to the

security. Alice and Bob select a random subset S of photons to use for a security

check, and tell each other (over a classical and potentially public channel) both their

basis choices and the results of their measurements. The trials on which they used

di®erent bases are discarded. For the rest, they compare their measurements. As-

suming ideal conditions (negligible noise, perfect detectors, etc.), their measurements

should match 100% of the time if there is no eavesdropping, but only ð100��2 Þ% of the

time if Eve has intercepted and resent a fraction � of the photons. The presence of

eavesdropping is therefore immediately detectable, unless the eavesdropping rate � is

so small that Eve cannot obtain signi¯cant information anyway. If no eavesdropping

has been detected, then for the remaining photons (those not in S) classical infor-

mation is again exchanged between Alice and Bob, but only concerning the choice of

bases, not the actual polarization values in those bases. The photons for which the

choices disagreed are again discarded. For the remainder, the polarizations are

guaranteed to match. These polarizations then form a random sequence which is then

used as the key.

A common variation on the BB84 idea is the E91 protocol. Here, rather than Alice

sending a photon to Bob, a third party sends out a pair of entangled photons, one to

Alice and one to Bob. Usually these photons were produced in Type II SPDC, so their

polarizations are perfectly anticorrelated. Now Alice and Bob proceed as before,

choosing bases, discarding trials on which the choices di®er, checking for security by

comparing measurement results on S, and using the random sequence determined by

the remaining trials as a key. (In this variation, one possible means of verifying the

absence of eavesdropping is to verify that there is no decrease in Bell inequality

violations.33,34)

Other protocols are possible as well, including one that only requires the use of two

non-orthogonal states.42 A slightly di®erent approach is to use the visibility of in-

terference patterns instead of correlations between polarizations.43 (For an interfer-

ence pattern that oscillates between intensity values Imin and Imax, the visibility is

de¯ned by V ¼ ðImax � IminÞ=ðImax þ Imin.) The interference used here is not the

familiar interference between amplitudes that occurs, for example, in the Young two-

slit experiment, rather it is interference between intensities, involving the fourth

order correlation function between the two ¯elds or second order correlation between

intensities. Two independent detectors measure intensities at di®erent output ports

of the interferometer, then each detector feeds its signal into a computer which

measures the correlation function between the signals. At low intensities, when only a

single photon at a time is likely to be striking the detectors, this becomes a coinci-

dence counting setup, in which an event is registered only when both detectors see a
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photon simultaneously (i.e. within a very short coincidence time window). Such

coincidence counting or intensity correlation experiments are common for investi-

gating entanglement e®ects in quantum optics. Quantum correlations can lead to

very high visibility in these experiments, close to 100%, whereas the presence of

background terms reduce the maximum visibility to 70:7% in the classical case. This

classical visibility limit is directly analogous to (and stems from the same source as)

the Bell inequality for correlations. When an eavesdropper interferes with the photon

traveling to Bob, it is detectible by a sudden drop in the visibility of the interference

pattern. For more details on this approach, see Sergienko et al.43

2.3. Quantum ghost imaging and secure image distribution

In order to prepare for applications in the next section, we now discuss that idea of

forming images through spatial correlations between pairs of photons. This is two-

photon imaging process is known as ghost imaging or correlated imaging. The spatial

correlations involved may be either classical correlations or quantum mechanical

correlations due to entanglement. Although ghost imaging has been achieved using

classically-correlated light sources,44–50 we focus here on the original version of ghost

imaging (quantum ghost imaging),51,52 which relies on pairs of entangled photons

produced by SPDC. The essential idea, shown schematically in Fig. 2(a) is that one

photon encounters the object to be imaged, then passes on to a single-pixel detector,

known as a bucket detector, DA, which has no spatial resolution. This detector only

registers the presence or absence of a photon, recording no information about the

spatial location or momentum. The other photon does not encounter the object at all,

but proceeds directly to a second, spatially-resolving detector, DB. Clearly, neither

detector by itself is capable of imaging the object: one detector gains no spatial

information, the other detector only sees photons that never interact with the object.

But when the detectors are connected to a coincidence circuit, the image reappears in

the coincidence rate between the detectors (i.e in the intensity correlations). The
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Fig. 2. (a) Quantum ghost imaging with entangled photons. (b) Klyshko backward-wave picture, in

which the signal and idler are treated as a single ray passing through the crystal from one detector to the

other.
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photon interrogating the object essentially acts as a gate, which opens the detection

window for the second photon only when the ¯rst photon has not been blocked by the

object. The second photon then provides the spatial information needed to recon-

struct the image.

The signal is transmitted from the object, then detected by bucket detector DA.

DA should be large enough to collect all of the signal photons arriving at the right end

of the apparatus. It only registers whether the photons passed through the object or

were blocked. Detector DB on the other hand has high spatial resolution: it can be a

CCD camera, an array of avalanche photodiodes, or a single small detector scanned

over the imaging region. The lens in branch 2 has focal length f . Let d1 and d2 be the

distances from the source to object and source to lens, and let s0 ¼ d1 þ d2. s1 is the

distance from the lens to detector DB. The distances s0 and s1 satisfy the imaging

condition 1
s0
þ 1

s1
¼ 1

f . When the information from the two detectors is combined via

coincidence counting, the image reappears if the coincidence rate is plotted versus

position in DB. The imaging process is therefore highly non-local; in fact, the original

motivation of this line of inquiry was to investigate the non-local causal structure of

quantum mechanics and the EPR \paradox". Although it is now clear that only

classical correlation between the spatial degrees of freedom is required for the in-

formation between the two photons to be correctly integrated, we will look below at a

variation in which true entanglement is needed.

The imaging property of the apparatus is more clearly shown by displaying a

schematic version drawn in the Klyshko\backward wave" picture53,54 (Fig. 2(b)).

Here, we view the signal and idler as a single photon passing through the crystal. The

signal is viewed as traveling backward from the object, into the crystal, where it

converts into the forward-moving idler, then travels onward to the detector DB. The

detector DA acts like the source in this view. Alternatively, we could fold the picture

over, so the signal appears to re°ect o® the crystal in order to form the idler. In this

latter version, the crystal acts as a mirror, and the pump determines the properties of

that mirror. We will assume that the pump beam is approximately a plane wave, so

the crystal acts as a planar mirror.

The ghost imaging apparatus has improved resolution compared to the image

formed in ordinary imaging with a comparable single lens, and in fact beats the usual

di®raction limit by a factor of 2. E®ectively, the resolution is determined by the

shorter pump frequency, rather than the longer signal or idler frequencies of the

detected photons. This fact has formed the basis for the process of quantum lithog-

raphy,55,56 in which two-photon imaging is used to write subdi®raction-sized struc-

tures onto a semiconductor surface. The idea has been extended to N -photon imaging

with N > 2, although the prospects for this to become practical seem limited, due to

the di±culty of producing su±ciently entangled states of more than two photons.

One question that could be asked at this point is whether we can use quantum

mechanics to securely transmit images from Alice to Bob. Of course, the answer is

obviously yes, since we can encode an image digitally and then encode with a
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quantum key, as in Sec. 2.2. But can we use some variation on ghost imaging to

accomplish secure quantum image distribution in an analog manner, without digi-

tizing? Suppose that the object whose image is to be transmitted is in Alice's lab,

along with the bucket detector, DA. The spatially-resolving detector DB is in Bob's

lab, and Alice wishes to send the object's image to him, while keeping it safe from

eavesdroppers. Note that if Alice and Bob have detectors with su±cient time reso-

lution and which have been well-synchronized (taking the transit time from A to B

into account), then in place of using a coincidence counter they can simply compare

the times at which they have detected photons and discard those times at which they

did not make simultaneous detections. So Alice may send a list of her detection times

(via a classical channel) to Bob, who then compares it with his list of detection times,

thus determining the coincidence times. Since Bob also knows the spatial locations

(the speci¯c pixels) of each detection event, he can now reconstruct the image. To

anyone eavesdropping on the classical channel, the list of random detection times is

meaningless, unless they have also intercepted the quantum channel (Bob's photon),

which contains the spatial information. To prevent this, Alice and Bob can use the

same means as in the E91 protocol: they place polarizers, randomly switching be-

tween two bases, in front of the detectors. Alice then sends the choice of polarization

basis along with the detection times. They keep only events on which they chose the

same basis. By comparing the polarizations measurements on a random subset,

eavesdropping may be detected, exactly as before.

The procedure is essentially a three-dimensional version of the E91 protocol,

where the two transverse spatial dimensions plus time replace the two-dimensional

qubit space of the conventional E91 case. This indicates that it might be advanta-

geous to investigate more generally what happens when we replace our two-dimen-

sional qubits with quantum degrees of freedom belonging to higher-dimensional

Hilbert spaces. This will be the topic of the next section.

3. Qudits and Imaging

The generalization from qubits built from a two-dimensional e®ective Hilbert space

spanned by states j0i and j1i to a d-dimensional qudit on a space spanned by states

j0i; . . . ; jd� 1i is obvious:
j i ¼ a0j0i þ a1j1i � � � þ ad�1jd� 1i; ð65Þ

with
Pd�1

i¼0 jaij2 ¼ 1. These are known as qutrits for d ¼ 3 and ququats for d ¼ 4.

Since we will again be looking at QKD, we need to ¯nd sets of mutually unbiased

(or mutually complementary) bases for these states. Letm be the number of bases we

seek, so we seek sets of basis vectors j ð�Þ
i i, where � ¼ 1; . . . ;m labels the basis, while

i ¼ 0; 1; . . . ; d� 1 labels the vector in that basis. We then require orthonormality,

jh ð�Þ
i j ð�Þ

j ij ¼ �ij; for all �; i; j ð66Þ
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and mutual complementarity (mutually unbiasedness),

jh ð�Þ
i j ð
Þ

j ij ¼ 1ffiffiffi
d

p ; for all i; j; � 6¼ 
: ð67Þ

Wootters and Fields57 showed that there exist m ¼ dþ 1 mutually unbiased bases

whenever d ¼ pk, with p prime and k non-negative integer.

For m ¼ 2 bases and d dimensions, we can take one basis arbitrarily,

j ð1Þ
0 i; j ð1Þ

1 i; . . . ; j ð1Þ
d�1i, then construct the second basis according to

j ð2Þ
k i ¼ 1ffiffiffi

d
p

Xd�1

n¼0

e2�ikn=dj ð1Þ
n i: ð68Þ

It has been shown that higher values of d and m can lead to both higher capacity

and improvements in security against eavesdropping.58–62 In addition, they maintain

their security in the face of greater amounts of noise. Consider a pure state j i, and
add some some admixture of noise F (0 � F � 1) by de¯ning the density operator

�̂ ¼ ð1� F Þj ih j þ F �̂noise, where �̂noise ¼ 1
9 I is the density matrix for a completely

chaotic system. Einstein's conditions on a physical theory, represented in the EPR

assumptions, have come to be known in the physics literature as local realism. These

preconditions have turned out to be too strong but do not preclude either locality or

realism.5,63,64 For F too large, apparent Bell inequality violations can be due to noise-

induced errors, and so the security of quantum cryptography breaks down. The value

F for which this occurs is 2� ffiffi
2

p
2 ¼ 0:293 for maximally entangled qubits (d ¼ 2); in

contrast, this value increases to 11�6
ffiffi
3

p
2 ¼ 0:30465 for maximally entangled qutrits

(d ¼ 3), and to 0:309 for d ¼ 4.66 Thus, QKD can be carried out in the presence of

larger amounts of noise as the dimension of the Hilbert space increases.

A number of realizations of qudits have been carried out experimentally, including

polarization entangled four-photon states,67 time-energy entangled qutrits using

single photon in a three-arm interferometer,68 and time-bin-entangled photons is

produced by a train of laser pulses.69 Here, however, we will concentrate one speci¯c

realization, optical OAM, which we introduce in the next subsection.

3.1. Orbital angular momentum

In addition to the intrinsic or spin angular momentum that leads to the existence of

polarization states, it is somewhat less well known that photons can also carry OAM.

This OAM is due to the possibility of the photon state having non-trivial spatial

structure. It wasn't until the 1990's that a thorough investigation of optical OAM

began to be carried out and that a simple way was found to produce it controllably.

After the seminal paper of Allen, et al.,70 a °ood of papers began which continues to

grow today. A number of excellent reviews of the subject exist.71–73

The key observation is that if an approximate plane wave is given, an azimuthally-

dependent phase shift of the form eil�, where � is the angle about the propagation
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axis, z, the resulting wave has angular momentum about the z-axis given by Lz ¼ l}.

(Note that single-valuedness of the ¯eld forces the topological charge l to be quan-

tized to integer values.) This phase factor has the e®ect of tilting the wavefronts by

an increasing amount as the axis is circumnavigated, so that the wavefronts have a

corkscrew shape. The Poynting vector S must be perpendicular to the wavefront, so

it is at an angle to the propagation axis. S therefore rotates about the axis as the

wave propagates, leading to the existence of non-zero OAM.

A number of di®erent beam modes can carry OAM, including higher-order Bessel

or Hermite–Gauss modes. Here, we focus on Laguerre–Gauss (LG) modes. The LG

wavefunction with OAM l} and with p radial nodes is74

ulpðr; z; �Þ ¼
C

jlj
p

wðzÞ

ffiffiffi
2

p
r

wðzÞ
� � jlj

e�r 2=w 2ðrÞL jlj
p

2r2

w2ðrÞ
� �

� e�ikr 2z= 2ðz 2þz 2
RÞð Þe�i�lþið2pþjljþ1Þ arctanðz=zRÞ; ð69Þ

with normalization C
jlj
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p!

�ðpþjljÞ!
q

and beam radius wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

zR

q
at z. zr ¼

�w 2
0

� is the Rayleigh range and the arctangent term is the Gouy phase.

There are a number of ways to generate optical OAM states, the most common

being the use of spiral phase plates (plates whose optical thickness varies azimuthally

according to l�
kðn�1Þ

75), computer generated holograms of forked di®raction gratings,76

which convert Guassian modes into OAM modes in ¯rst-order di®raction, or spatial

light modulators (SLM).

3.2. Entangled OAM pairs

The SPDC-generated biphoton state is most often written as an expansion in the space

of transverse linear momenta of the outgoing signal and idler, as was done in Sec. 1.

Now, though, we instead wish to expand in the space of OAM. Consider a pump beam

of spatial pro¯le EðrÞ ¼ ul0p0ðrÞ encountering a 
2 nonlinear crystal, producing two

outgoing beams via SPDC. For ¯xed beam waist, the range of OAM values produced

by the crystal is roughly inversely proportional to the square root of the crystal

thicknessL.77Wewish a broadOAMbandwidth, so we assume a thin crystal located at

the beam waist (z ¼ 0). The output is an entangled state,78 with a superposition of

terms of form ul 0
1
;p 0

1
ul 0

2
;p 0

2
, angular momentum conservation requiring l0 ¼ l 01 þ l 02. We

will take the pump to have l0 ¼ 0, so that the OAM values just after the crystal are

equal and opposite: l 01 ¼ �l 02 � l. The p 0
1; p

0
2 values are unconstrained, although the

amplitudes drop rapidly with increasing p 0 values (see Eq. (82) below). The output of
the crystal may be expanded as a superposition of signal and idler LG states:

j�i ¼
X1

l 01;l
0
2¼�1

X1
p 0
1;p

0
2¼0

C
l 01;l

0
2

p 0
1
p 0
2
jl 01; p 0

1; l
0
2; p

0
2i�ðl0 � l 01 � l 02Þ; ð70Þ
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where the coupling coe±cients are given by

C
l 01;l

0
2

p 0
1
p 0
2
¼
Z

d2r�ðrÞ ul0
1
p 0
1
ðrÞul 0

2
p 0
2
ðrÞ

h i	
: ð71Þ

Explicit expressions for the C
l 01;l

0
2

p 0
1
p 0
2
coe±cients have been calculated Torres, Alexan-

drescu, and Torner.77

How entangled are the angular momenta of the beams? One way to answer this is

to again compute the Schmidt number. Taking p1 ¼ p2 ¼ 0 for simplicity, Eq. (70)

reduces to

j�i ¼
X1
l¼0

C l;�l
00 jl; 0ij � l; 0i �

X1
l¼0

ffiffiffiffiffi
�l

p
jlij � li; ð72Þ

from this, �l ¼ ðC l;�l
00 Þ2 can be calculated explicitly.77 The state is already in Schmidt

form. From the �l, the Schmidt number and von Neumann entropy can then be

found.

Salakhutdinov et al.79 examine the Schmidt number for parametric down con-

version in detail. Looking at the case of a Gaussian pump (l ¼ p ¼ 0) and vanishing

radial quantum numbers for both signal and idler (ps ¼ pi ¼ 0), they found that a

pump beam of waist w ¼ 325�m and wavelength �p ¼ 413 nm on a crystal of

thickness L ¼ 2mm, the total Schmidt number was K � 350. However, those asso-

ciated with entangled azimuthal degrees of freedom (OAM) only accounted for

roughly Kaz � 2
ffiffiffiffiffi
K

p � 37 of them. A more detailed analysis found that pure radially

entangled modes (ps and pi values entangled) account for a further Kr �
ffiffiffiffiffi
K

p � 18

modes. The remainder are modes of radial-azimuthal cross-correlation, with p and l

values jointly entangled.

3.3. Quantum cryptography with OAM

The ¯rst successful demonstration of QKD with OAM was achieved by Gr€oblacher

et al.,62 using qutrits formed by superpositions of l ¼ 0;� 1 states. A Gaussian beam

(l ¼ p ¼ 0) was used to pump a nonlinear crystal. Parametric downconversion then

produced photon pairs with opposite momenta � l. Only pairs with l ¼ 0; 1 were

used. A transmission hologram was placed in each outgoing beam. When the beam

strikes on-axis, the hologram changes l by one unit, so for example linitial ¼ 0 changes

to lfinal ¼ 1. However, when the beam strikes the hologram o®-center, the result is a

superposition of linitial and lfinal. By changing the displacement of the hologram within

the beam, we may control the relative weights in this superposition. By this means, it

is possible to produce a maximally-entangled state j i ¼ 1ffiffi
3

p ðj00i þ j1;�1i þ j �
1; 1iÞ where the two numbers in each ket represent the OAM in arms A and B,

respectively. In this manner, the successful construction of a quantum key shared

between two experimenters was demonstrated.62 150 qutrits were sent in, and se-

curity was maintained by checking the parity of 3-qutrit blocks and discarding those
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with parity mismatch. The result was a ¯nal key of 72 qutrits, which was used to code

and decode a 72-bit message without error. The Bell parameter (a measure of sup-

posed violation of local realism) for this experiment was S3 ¼ 2:688, well above the

classical upper limit of S3 ¼ 2.

3.4. Digital spiral imaging

Digital spiral imaging.80,81 is a form of angular momentum spectroscopy in which

properties of an object are reconstructed based on how it alters the OAM spectrum of

light used to illuminate it (Fig. 3). The input and output light may be expanded in

LG functions, with the object acting by transforming the coe±cients of the ingoing

expansion into those of the outgoing expansion. Information about the transmission

pro¯les of both phase and amplitude objects may be retrieved80,77

The idea naturally arises of trying to use the measured OAM spectrum to re-

construct an image of the object. But, since only intensities are measured, the lack of

phase information prevents this. One way to extract the necessary phase is to use

pairs of beams, in some sort of interferometric arrangement. This leads naturally to

the idea of using pairs of photons with entangled OAM states, so we next investigate

OAM entanglement in SPDC.

3.5. Joint OAM spectra

We now investigate the use of two beams, rather than one, in combination with spiral

imaging. The full bene¯ts of doing this will emerge in Sec. 3.7. In this section, we focus

on examination of the OAM correlations. We begin with an entangled version, where

the light source is parametric downconversion in a nonlinear crystal such as 	-barium

borate (BBO). Imagine an object in the signal beam (Fig. 4). Since OAM conser-

vation holds exactly only in the paraxial case, we assume the signal and idler are

produced in collinear downconversion, then directed into separate branches by a BS.

Output

Pump

DetectorsOAM
sorter

Object

l=0

l=1

l= -1
l  , p

00

Input spiral spectrum Output spiral spectrum

l l

l, p

.....

...
..

0

Fig. 3. Digital spiral imaging: the presence of an object in the light beam alters the distribution of angular

momentum values in the outgoing light.
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(We assume all BSs are 50–50.) Assume perfect detectors for simplicity (imperfect

detectors can be accounted for by the method in Ref. 82).

Let P ðl1; p1; l2; p2Þ be the joint probability for detecting the signal with quantum

numbers l1; p1 and the idler with values l2; p2. The marginal probabilities at the two

detectors (probabilities for detection of a single photon, rather than for coincidence

detection) are

Psðl1; p1Þ ¼
X
l2;p2

Pðl1; p1; l2; p2Þ; Piðl2; p2Þ ¼
X
l1;p1

P ðl1; p1; l2; p2Þ: ð73Þ

Then the mutual information for the pair is

Iðs; iÞ ¼
Xlmax

l1;l2¼lmin

Xpmax

p1;p2¼0

Pðl1; p1; l2; p2Þlog2
P ðl1; p1; l2; p2Þ

Psðl1; p1ÞPiðl2; p2Þ
� �

: ð74Þ

The most common experimental cases are when (i) pmax ¼ 1 (p1 and p2 are not

measured, so all possible values must be summed), or (ii) pmax ¼ 0. Except when

stated otherwise, we will use lmax ¼ �lmin ¼ 10 and pmax ¼ 0.

Suppose the transmission pro¯le for the object is T ðxÞ, where x is position in the

plane transverse to the beam axis. The goal is to determine the function T ðxÞ from
measurements of OAM correlations only. The coincidence probabilities Pðl1; p1; l2;
p2Þ ¼ jAl1 l2

p1p2 j2 have amplitudes

Al1 l2
p1p2 ¼ C0

X
p 0
1

C�l2;l2
p 0
1p2

a�l2;l1
p 0
1p1

ðzÞ; ð75Þ

a
l 01l1
p 0
1
p1
ðzÞ ¼

Z
ul0

1
p 0
1
ðx; zÞ½ul1p1ðx; zÞ�	T ðxÞd2x; ð76Þ

where C0 is a normalization constant. Here it is assumed that the total distance in

each branch is 2z (see Fig. 4). We de¯ne an operator T̂ to represent the e®ect of the

l =p=0
0 0

Pump

BBO Crystal

Object
Coincidence
counter

Detectors

Detectors

OAM
sorter

OAM
sorter

z

z

2z

BS

Fig. 4. Setup for analyzing object via OAM of entangled photon pairs.
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object on the beam. We may expand this operator in the position basis,

T̂ ¼
Z

d2rd2r 0jr 0iT ðr; r 0Þhrj ¼
Z

d2rjriT ðrÞhrj; ð77Þ

where the last line assumes that the operator is local, i.e. diagonal in the position

space basis. So the function T ðrÞ is then given by

T ðrÞ ¼ hrjT̂ jri: ð78Þ
Alternately, the object operator may be expanded in the Laguerre–Gauss basis,

T̂ ¼
X
ll 0

X
pp 0

dl 0l
p 0pjl 0p 0ihlpj: ð79Þ

Making use of these de¯nitions and of Eq. (76), it follows immediately that

d
l 01;l1
p 0
1
;p1

¼ hl 01p 0
1jT̂ jl1p1i ¼ a

l1;l
0
1

p1;p
0
1
: ð80Þ

Using this result in Eq. (79), then applying Eq. (78) and the fact that ulpðrÞ ¼ hrjlpi,
we ¯nd that determination of the a

l 01;l1
p 0
1
;p1

coe±cients is equivalent to reconstructing the

object, since

T ðrÞ ¼ hrjT̂ jri ¼
X
ll 0

X
pp 0

a
l 01;l1
p 0
1
;p1
ul1p1ðrÞ½ul 0

1
p 0
1
ðrÞ�	: ð81Þ

That the object's size and shape a®ect the coincidence rate is easy to see. For

example, Fig. 5 shows the calculated spectrum when a single opaque strip of width d

is placed in the beam. We see a clear e®ect from changing an object parameter (the

strip width). Similarly, if the corresponding mutual information is calculated it is

found to vary with width, exihibiting a minimum at d ¼ w0.

The central peak of the spectrum (Fig. 5) broadens as d increases from zero,

reducing the correlation between l1 and l2; the mutual information between them

thus declines over the range d=w0 < 1. But at d=w0 � 1, the central peak in fl1; l2g

(a) (b) (c)

Fig. 5. An opaque strip of width d placed in the signal path. The widths are (a) d ¼ 0:1w0, (b) d ¼ 0:9w0,

(c) d ¼ 2:5w0. The outgoing joint angular momentum spectra are plotted. As the width increases, the peak

in the spectrum broadens, then (at d ¼ w0) splits into two peaks.
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space bifurcates into two narrower peaks (right side of Fig. 5); the information thus

goes back up as the peaks separate in the region d=w0 > 1, after passing through the

minimum at d ¼ w0. If we continue to su±ciently large d, the two peaks once again

broaden and the mutual information decays gradually to zero. In addition, the total

intensity getting past the opaque strip will continue to drop, so coincidence counts

decay rapidly.

3.6. Mutual information and symmetry

Figure 6 shows the computed mutual information for several simple shapes. It can be

seen that I depends strongly on the size and shape of the object, so that for object

identi¯cation from among a small set a comparison of the I values rather than of the

full probability distribution may su±ce.

If the object has rotational symmetry about the pump axis, then its transmission

function T ðrÞ depends only on radial distance r , not on azimuthal angle �. The

angular integral in Eq. (76) is then
R 2�
0

e�i�ðl�l 0Þd� ¼ 2��l;l 0 . So the joint probabilities

reduce to the form Pðl1; l2Þ ¼ fðl1Þ�l1;l2 (assuming p1 ¼ p2 ¼ 0) for some function f .

The marginal probabilities for each arm reduce to P1ðl1Þ ¼ fðl1Þ and P2ðl2Þ ¼ fðl2Þ.
The mutual information IðL1;L2Þ ¼ S1ðL1Þ where S1ðL1Þ ¼ �Pl1fðl1Þ ln fðl1Þ is the
Shannon information of the object arm OAM spectrum. Thus in the case of rotational

symmetry, the second arm becomes irrelevant from an information standpoint. In

this sense, the quantity �ðL1;L2Þ � jIðL1;L2Þ � S1ðL1Þj is an order parameter, ca-

pable of detecting breaking of rotational symmetry.

More generally, suppose that the object has a rotational symmetry group of order

N ; i.e. it is invariant under �! �þ 2�
N . From Eqs. (69) and (76), it follows that the

coe±cients must then satisfy a
l 01l1
p 0
1p1

¼ e
2�i
N ðl 01�l1Þal 01l1

p 0
1p1

, which implies a
l 01l1
p 0
1p1

¼ 0 except

when
l 01�l1
N is integer. When N goes up (enlarged symmetry group), the number of

non-zero a
l 01l1
p 0
1
p1

goes down; with the probability concentrated in a smaller number of

con¯gurations, correlations increase and mutual information goes up. This may be

seen in the three right-most objects of Fig. 6, for example.

The ¯rst experimental use of this correlated spiral spectrum method has recently

been carried out for the purpose of object identi¯cation.83 Figure 7 shows a simple

example: if the coincidence rate is plotted versus the OAM of two entangled photons,

I=2.7174 I=3.0112I=2.7589I=2.5704I=2.3589

Fig. 6. The mutual information depends strongly on size and shape of the object. Here, the two objects on

the left have widths 1:5w0 and 0:2w0; all other widths are 0:4w0.
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normally angular momentum conservation forces the coincidence rate to vanish o®

the diagonal. However, as seen in the plots when objects with four-fold and six-fold

rotational symmetry are placed in one beam o®-diagonal terms appear, shifted re-

spectively by three or four units from the diagonal. This allows the symmetry

structure of the object to be easily determined, opening up possible applications such

as rapid recognition of defective items on an assembly lines or irregular and diseased

cells in a tissue sample.

3.7. Imaging with entangled OAM

The inability of digital spiral imaging to produce images due to loss of phase infor-

mation has been pointed out. But a variation on the entangled OAM setup can be

used to ¯nd the expansion coe±cients including phase.

Assume that the beam waist for the OAM expansion (which is determined by the

size and location of the detector aperture) is equal to the pump waist. Then, for

the case of a Gaussian pump (l0 ¼ p0 ¼ 0) the expansion coe±cients of Sec. 3.2

reduce to82:

C l;�l
p1;p2 ¼

Xp1
m¼0

Xp2
n¼0

ð23Þmþnþlð�1Þmþn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1!p2!ðlþ p1Þ!ðlþ p2Þ!

p ðlþmþ nÞ!
ðp1 �mÞ!ðp2 � nÞ!ðlþmÞ!ðlþ nÞ!m!n!

: ð82Þ

Using the latter expression for the coe±cients, it can be shown84 that determining

the coincidence amplitudes Al1 l2
p1p2 is su±cient to determine the ap 0

1
0 coe±cients, in-

cluding phase. The measurement of the Al1 l2
p1p2 is accomplished by inserting a BS to

mix the signal and idler beams before detection, as in Fig. 8, erasing information

about which photon followed which path. We then count singles rates in the two

detection stages, rather than the coincidence rate. If value l is detected at a given

(a) (b) (c) (d)

Fig. 7. An object with four-fold rotational symmetry (a) is placed in one output beam of a down con-
version crystal. The joint OAM spectrum (b) of the two outgoing beams shows, in addition to the OAM-

conserving main diagonal, a pair of secondary bands displaced from the diagonal by four units. Similarly a

six-fold symmetric object (c) has joint OAM spectrum with bands displaced by six units (d).
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detector it could have arrive by two di®erent paths, so interference occurs between

these two possibilities. The detection amplitudes in the two sets of detectors Dþ and

D� involve factors Aþ 
 ð1þ ia
l0�l2;l1
00 Þ and A� 
 ðiþ a

l0�l2;l1
00 Þ, with detection rates

R� 
 1þ jal0�l2;l1
00 j2 � 2i Im a

l0�l2;l1
00 . From these counting rates, both the amplitudes

and the relative phases of all coe±cients can be found, allowing full image recon-

struction, by inversion of Eq. (76) to ¯nd the object transmission function T ðrÞ.

3.8. Pixel entanglement

In the previous sections, we have discussed entanglement between orbital angular

momenta. Another avenue for investigating the spatial entanglement in imaging

situations is via pixel entanglement.85 Here, a spatially-resolving detector is used in

each branch of a correlated-imaging setup, and spatial correlations are found by

measuring coincidence counts between corresponding pixels in the two detectors.

If the detectors are in the imaging plane, the result is the position-space corre-

lation function, while if the detectors are in the Fourier plane of the imaging

system, then the momentum space correlations are measured instead. The mutual

information carried by the spatial correlations has been studied29 using a Gaussian

model similar that used in subsection 1.6: in the notation of Dixon et al.,29 the

biphoton state is

j i ¼
Z

d2xad
2xb fðxa;xbÞâ†aâ †

bjvaci ¼
Z

d2kad
2kb ~f ðka;kbÞâ†aâ †

bjvaci; ð83Þ

where the position- and momentum-state amplitudes are

fðxa;xbÞ ¼ N e
�jxa�xb j 2

4� 2c e
�jxaþxb j 2

16� 2p ; ð84Þ
~f ðka;kbÞ ¼ ð4�p�cÞ2N e��

2
c jka�kbj2e�4� 2

pjkaþkbj 2 ; ð85Þ
and N ¼ 1

2��c�p
. De¯ning joint and marginal probability densities pðxa;xbÞ ¼

jfðxa;xbÞj2, pðxaÞ ¼
R
pðxa;xbÞd2xb, and pðxbÞ ¼

R
pðxa;xbÞd2xa, the mutual

Object

Detectors D

OAM
sorter

OAM
sorter

Detectors D+

-

BS

l =p=0
0 0

Pump BBO Crystal

BS

Fig. 8. A con¯guration allowing image reconstruction via phase-sensitive measurement of entangled

OAM content.
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information (the same for either the position or momentum basis) is

IðA : BÞ ¼ �
Z

pðxa;xbÞlog2
pðxa;xbÞ
pðxaÞpðxbÞ

d2xad
2xb ¼ log2

4�2p þ �2
c

4�c�p

 !
2

: ð86Þ

For the limiting case
�p
�c

� 1, we ¯nd the simple result IðA : BÞ ¼ log ð�p�c Þ2. For the
values �p ¼ 1500�m and �c ¼ 40�m, this predicts IðA : BÞ � 10:5 bits per pho-

ton; experimentally, the value was found to be 7:1� 0:7 in the position basis and

7:2� 0:3 in the momentum basis.29 For these approximate Gaussian states, the

Schmidt number is approximately K � ð�p�c Þ2 ¼ 1400, indicating a highly entangled

state.

4. Conclusion

We have seen that the unique properties of quantum systems, superposition and

entanglement in particular, allow for a number of interesting and useful phenomena

in communication that are not possible in classical systems. Focusing on cryptog-

raphy and imaging, we have seen that not only does the non-commutativity of

quantum operators allow truly secret communication, but that many of the appli-

cations examined have involved extraction of multiple bits of information in a single

photon. Thus, further developments along these lines o®er the promise of somebody

being able to securely transmit enormous amounts of information with a handful of

photons. It is impossible to say what further interesting phenomena may be uncov-

ered in the course of these investigations.
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